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ABSTRACT 
Course selection is a crucial activity for students as it directly im-
pacts their workload and performance. It is also time-consuming, 
prone to subjectivity, and often carried out based on incomplete 
information. This task can, nevertheless, be assisted with compu-
tational tools, for instance, by predicting performance based on 
historical data. We investigate the efects of showing grade pre-
dictions to students through an interactive visualization tool. A 
qualitative study suggests that in the presence of predictions, stu-
dents may focus too much on maximizing their performance, to 
the detriment of other factors such as the workload. A follow-up 
quantitative study explored whether these efects are mitigated by 
changing how predictions are conveyed. Our observations suggest 
the presence of a framing efect that induces students to put more ef-
fort into course selection when faced with more specifc predictions. 
We discuss these and other fndings and outline considerations for 
designing better data-driven course selection tools. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in visual-
ization. 
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1 INTRODUCTION 
Academic advising is a crucial aspect in the mission of any Higher 
Education Institution (HEI). One of its central components is course 
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recommendation. This is of paramount importance to students 
as proper course selection has a direct impact on their academic 
workload and overall performance [5]. 

Course recommendation is usually performed by a designated ad-
visor who assists students in selecting the most appropriate courses 
for their upcoming term. This advice is based on the advisor’s 
knowledge of the academic program and its history, as well as 
her ability to craft personalized recommendations from that in-
formation. The latter factor makes academic advising particularly 
challenging: Since each student’s history and profle is unique, ad-
visors are repeatedly challenged with previously unseen scenarios 
that require a thorough analysis. The challenge becomes tougher 
as advising must often occur within a short period of time [32], 
making course recommendations prone to errors and susceptible 
to subjective views. For example, an individual’s learning experi-
ence may likely infuence her perception of the difculty of a given 
course. As students lack a global view of the study program, they 
also tend to make decisions based on the vox populi. 

For all the reasons mentioned above, some eforts aim at assisting 
academic advising with data-based visualization tools (e.g., [18, 33]). 
The goal of such tools is not to replace the human advisor but to em-
power both students and advisors with complementary actionable 
advice based on a more objective view of the students’ enrollment 
alternatives. That view can be based on ofcial information about 
the study program (e.g., the courses’ number of credits, their ex-
pected workload), the historical difculty of the courses, and the 
student’s historical performance. 

A key aspect when designing such data-based tools is how to 
characterize the performance of students. This is due to the fact 
that the chosen metric may steer the students’ attention to specifc 
aspects of their professional instruction. The GPA, for example, is 
often seen as a key factor for success in the labor-market and there 
is a cultural tendency to frame college students based on it [65]. 
For this reason, it is not uncommon for students to try to maximize 
their GPA regardless of their actual development of knowledge, 
skills, or understanding [26]. Hence, the GPA has limitations in 
refecting a student’s academic performance. From a pedagogical 
perspective, performance metrics that seek to assess and develop the 
“21st century skills” [56] (critical thinking, collaboration, creativity, 
long-life learning, etc.), are more desirable. However, metrics of 
this kind are seldom collected by HEIs in a systematic fashion. 
Ultimately, the use of a specifc performance metric in a data-based 
tool must observe any availability constraint. That is, it is dependent 
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such tools can efciently convey the multiple facets of a study 
program. In this line of thought, we present the fndings of two 
studies carried out with iCoRA (interactive Course Selection and 
Recommendation Assistant), a tool that supports students in de-
ciding their upcoming term’s enrollment, prior to their planning 
advising meeting. iCoRA is part of an initial efort to improve the 
course recommendation process at the Escuela Superior Politéc-
nica del Litoral (ESPOL), a Latin-American university. The tool’s 
recommendations are based on course grade predictions, which 
are computed by integrating the available information at ESPOL, 
namely the student’s grades and data about the courses such as 
workload, number of credits, pre-requisites, and historical perfor-
mance. iCoRA also provides explanations for its predictions. 

The two studies conducted with iCoRA required students to 
compose and decide on a set of courses for their upcoming term. 
We frst conducted a qualitative study that investigated the efects 
of showing performance predictions on the students’ decisions. 
Here, the grades predicted by iCoRA were presented through a 
range-based visual representation. We found that in the presence 
of these predictions, students focused mainly on maximizing the 
predicted grades, paying less attention to other important factors 
that may play a role in their term outcome (e.g., the workload). 
This aligns with the results of previous research on the unintended 
consequences of exposing students to historical performance data 
based on the GPA (e.g., [2, 5, 19, 61]). We argue that this type of 
overreliance efect constitutes an important limitation of making 
GPA-based predictions. 

In a follow-up quantitative study, we then investigated whether 
the efects observed in our qualitative evaluation could be mitigated 
through design, by changing the visual representation of the pre-
dictions. To this end, we modifed iCoRA to convey its predictions 
through eight diferent visual representations that span a specifc to 
vague spectrum. This study focused on characterizing not only the 
students’ decisions, but also their decision process and preferences. 
We found that some visual representations had signifcant efects 
on the students’ chosen workload and the time they interacted with 
the tool’s explanations for the predicted grades. 

This paper contributes empirical evidence on the impact that 
grade- and GPA-based predictions have on the behavior of students, 
as well as the role played by the visual representations of those 
predictions. We discuss our fndings in the context of iCoRA and 
ESPOL, not without arguing the context-related limitations of our 
design choices, and the identifed efects of showing grade predic-
tions to students. The paper also contributes a discussion on the 
potential ethical concerns that may arise from providing students 
with GPA-based predictive tools to support their enrollment deci-
sions. Based on all of this, we devise several considerations and 
potential principles for the design of new efective data-driven tools 
for course selection and recommendation. 

2 RELATED WORK 
Course selection and academic performance prediction are often 
discussed within the realm of Learning Analytics (LA) [44]. In this 
section, we frst review existing student-oriented visualization tools 
in the LA literature. Since iCoRA’s recommendations are based 
on grade predictions, we then survey studies on the efects that 

exposing students to GPA and historical performance information 
has on their enrollment decisions and behavior. We conclude this 
section with the state of the art in visualization design choices and 
how these afect viewers’ interpretation of visual representations. 
We build upon knowledge from these areas to inform the design of 
iCoRA and the studies we present in this paper. 

2.1 Visual Learning Analytics and Tools for 
Academic Advising 

Viera et al. [67] use the term Visual Learning Analytics (VLA) to 
refer to LA and Educational Data Mining (EDM) techniques that 
are facilitated through interactive visual interfaces. Defned as “the 
use of computational tools and methods for understanding educa-
tional phenomena through interactive visualization techniques” [67, 
p. 120], this research area lies at the intersection of LA, EDM, and 
Information Visualization (InfoVis). 

In the area of academic advising, LISSA [18] and LADA [33] 
are notable examples of VLA tools. LISSA uses historical data to 
predict the probability of graduation of students within the career’s 
expected time. This is used by advisors to plan enrollment of frst-
year students who have previously failed courses. Using clustering 
techniques, LADA predicts the probability that a student fails a 
course. 

Both LISSA and LADA target teachers and advisors as their f-
nal users. Student-oriented advising tools are less common. One 
relevant example in this category is KMCD [70], a self-advising 
system that shows courses for enrollment based on a given cur-
riculum design. CARTA [70] is another course planning tool that 
provides students with course descriptive information, evaluations 
of instructors, and grade distributions. iCoRA shares with KMCD 
and CARTA the goal of making information on historical data of 
courses available to students. However, in line with known guide-
lines for student-oriented VLA tools (e.g., [3, 10, 11, 14, 57, 70]), 
iCoRA resorts to visualization techniques to also provide perfor-
mance predictions through visual representations. 

2.2 Exposing Students to Historical 
Performance Information 

Several research eforts have investigated the impact of disclosing 
information about performance of previous cohorts on students. Ac-
cording to Ognjanovic et al. [53], the knowledge of historical GPAs 
is a key factor to explain the courses students opt for. It has been 
found that when students have access to the performance outcomes 
of previous courses, they tend to choose leniently graded courses [5] 
or make shortsighted choices regarding their careers [63]. In a more 
focalized context, Lim et al. [43] found more recently that even 
Learning Analytics Dashboards (LADs) may have a negative impact 
on students because of the social anxiety they experience when 
their peers performance is compared to theirs. These and other 
unintended consequences [19] often prevent HEIs from making 
performance and GPA information publicly available. 

On the other hand, a parallel line of research found that when 
students are indirectly exposed to academic performance visualiza-
tions through their advisors or counselors during one-to-one meet-
ings, they show—over a relatively short period of time—positive 
changes in motivation and self-regulated strategies for learning [2]. 
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Along the same lines, Main & Ost [47] identifed that there was no 
evidence of the efect of letter grades on the students’ enrollment 
decisions. They also found a positive efect on the students’ eforts 
within courses. 

The body of work referred above suggests that there is still the 
need to study the impact of LADs and data-based tools that expose 
students to historical performance information. We take steps in this 
direction with a special focus on visualization, by also investigating 
the role that diferent visual representations play when presenting 
performance predictions to students. 

2.3 Frames and Visual Representations 
A framing efect arises when people make diferent choices based 
on how a given problem—or set of options—is presented. This type 
of cognitive bias has been widely studied in opinion formation 
(e.g., [22, 25, 52]) and decision making processes (e.g., [40, 41, 48]). 
Framing efects have also been observed when visual representa-
tions are used as communicative structures of a message. Cheema 
et al. [20] found that visual representations for goal progress (e.g., 
progress bars) enhance motivation as people approach their goal. 
Low-level visual features such as spacing, position, and order have 
also been found to impact the responses elicited by survey questions 
as well as the response process [66]. Baumer et al. explored how 
framing efects can be mitigated in text visualizations of political 
issues [7, 8]. Other explorations in the context of human rights 
narratives have investigated the efects that anthropomorphizing 
standard charts has on the empathy and prosocial behavior of the 
viewers [12]. 

In a broad sense, rhetorical techniques—the choices made at the 
data, visual representation, annotation, and interactivity levels— 
steer our thinking of the topics presented by a visualization. In 
consequence, those techniques afect end-user interpretation [34]. 
The way diferent design choices prompt viewers to interpret vi-
sualizations from diferent perspectives has been investigated at 
diferent levels: from the efectiveness of low-level visual map-
pings [23, 24, 69], to the impact of more high-level concepts and 
visualization elements such as titles [38, 39] and visual embellish-
ments [6]. The impact of the latter group has been studied in dif-
ferent contexts: visualization recognition, recall, comprehension 
and interpretation, memorability, perception of bias, and change of 
attitude. All these are important processes that viewers experience 
when exposed to visual representations of data. 

Inspired by the body of knowledge summarized above, we are 
interested in investigating the efect that diferent visual represen-
tations of academic performance predictions have on the students’ 
decisions when planning their upcoming terms. In this work, we 
defne a continuum of prediction representations—ranging from 
specifc to vague—and study how the students’ decisions, decision 
processes, and preferences are shaped by these representations. 

3 MOTIVATING CONTEXT AND RESEARCH 
QUESTIONS 

ESPOL1 is an engineering-oriented Ecuadorian university with over 
10,000 students and 32 undergraduate programs. The advisors of 

1http://www.espol.edu.ec 

its academic advising system are lecturers chosen by workload 
availability who are assigned up to 40 students (25 on average). Ad-
vising sessions take place twice every term over a two-week period: 
right before the term begins (for course selection and recommenda-
tion) and after the midterm exams (to monitor the students’ perfor-
mance). Each advising session is supposed to last no longer than 
15 minutes. 

In-house observations and interviews revealed that it is common 
for students to arrive unprepared or undecided to their term plan-
ning advising appointments. This makes advising sessions longer, 
which is particularly problematic when the students have other 
issues that also need to be addressed during the meeting. Besides, 
this lack of preparation may induce the students to select their 
courses on the spot, likely on the basis of unofcial, incomplete, 
and potentially non-accurate information. For instance, in-house 
inquiries about the activities students perform to decide on their 
courses, reveal that 83% ask other fellow students not only about 
the difculty of the courses, but also about the reputation of lectur-
ers. These inquiries also indicate that students deem their fellow 
students’ advice as important as their advisor’s. 

At ESPOL, students pass a course with a minimum grade of 6.00 
(out of 10) and are ranked in terms of their GPA, which is refected 
in their ofcial academic record and transcripts. Although some in-
structors may conduct class activities using alternative performance 
metrics (e.g., development of learning outcomes, levels of engage-
ment), ESPOL’s current grading policy enforces all evaluations to 
be captured via the students’ grades and, consequently, their GPA. 
This information is also commonly requested by recruiters of the 
local market in job applications. For these reasons, the students at 
ESPOL deem GPA performance highly important, so much so that 
they carefully consider any potential impact on their GPA when 
making enrollment decisions. 

The aforementioned observations suggest that a tool that sup-
ports the data analysis aspect of course selection could help students 
not only in preparing for their term planning appointments, but also 
in making more informed decisions. Ultimately, this could alleviate 
the advisor’s workload and provide students with a more objec-
tive view of their study program. We highlight that, rather than 
replacing the advisor, a tool of this type has the potential to make 
the student-advisor dialogue more efective and efcient. However, 
before such a tool could be deployed in a real-world setting, we 
would need to understand: 

RQ1: What are the efects of showing performance predictions 
to students during term planning? 

RQ2: How do these efects vary when we change the visual 
representations used to convey the predictions? 

We investigate these questions through the lens of iCoRA [15], 
an interactive visualization tool that provides students with histori-
cal data on their academic program. The studies conducted with 
iCoRA focus on the Computer Science (CS) program of ESPOL, 
that is composed of 41 courses (104 credits). 37 of these courses 
(96 credits) are compulsory while the remaining 4 (8 credits) are 
elective. This curriculum design makes the enrollment less fexible 
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than most universities in Europe and North America, where stu-
dents can often mix and match a wider variety of courses based on 
their interests and tastes. 

Given the extensive use of the GPA at ESPOL and its importance 
for the students’ career prospects, iCoRA’s current implementa-
tion issues course recommendations based on the students’ past 
grades. That said, we do acknowledge the limited capacity of the 
GPA to fully describe a student’s learning, capabilities, and skills. 
A myriad of factors beyond course grades have shown to infu-
ence students’ performance (e.g., demographic and socio-economic 
background [30]; high school history [37]; social ties with class-
mates [28]; personality and psychological aspects such as self-
efcacy [4], motivation [58, 59], and approaches to learning and 
preferences for teaching/courses [17]). Therefore, this investigation 
should be regarded as evidence of the efects of exposing students 
to performance predictions in general. Our goal is to provide a ref-
erence for the design of tools based on other performance metrics, 
by showing how certain design choices may shape the students’ 
behavior (see also section 7.4 in the Discussion). 

4 ICORA 
iCoRA [15] is a tool that assists students in planning their upcoming 
term in preparation to their advising appointments. It supports the 
composition of arbitrary sets of courses available for enrollment. 
Based on past observations, it provides performance predictions 
and information on the term’s resulting workload and difculty. 

Although iCoRA is not the main contribution of this paper, this 
section describes the tool in detail as its components are relevant 
for the studies later described. 

4.1 Students’ Academic Program and History 
The program view shows the student’s academic program as a grid 
of courses with links indicating pre- and co-requisites (Figure 1a). 
Courses are organized into four categories (basic science, profes-
sional training, humanities, and elective) and are color-coded ac-
cordingly. This view shows each course with the grade obtained by 
the student; the grades are shown in green for passed courses, and 
in red for failed ones. Courses that have been repeated are depicted 
as groups of stacked rectangles, each representing an enrollment 
instance (e.g., Figure 1b). 

Clicking on a course of the program view displays the course’s 
general and historical information (Figure 1c): number of credits, 
weekly workload, difculty estimators (course grading standard 
α and grading stringency β—as defned in [16]), distribution of 
grades, and historical performance. This data can be fltered by time 
through an interactive range slider (Figure 1d). This supports the 
exploration of the course’s evolution over time and provides insights 
about the performance of students who have recently enrolled in 
a given course. This is relevant to support students in making 
decisions in light of recent data. 
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Figure 1: iCoRA’s student module. The main view shows the courses of the student’s academic program. Clicking an element 
of this view reveals the course’ history and general information. Under the prediction mode, courses can be dragged onto the 
prediction panel. In response to these interactions, iCoRA predicts the student’s performance in each of the selected courses. 
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4.2 Course Sets and Performance Predictions 
Under the prediction mode, available courses from the program 
view can be dragged onto the grades prediction panel (Figure 1e) to 
compose one or more sets of courses. These interactions trigger the 
execution of iCoRA’s performance prediction models and update 
the panel’s content. 

The prediction models for each subject are based on gradient 
boosting trees (GBT) trained on historical data that comprise term 
workload, previous grades, failing history, and aggregated course 
difculty. In the version of iCoRA shown in Figure 1, the perfor-
mance prediction of each course is depicted as a range—computed 
via quantile regression on GBT—on a horizontal scale between 0 
and 10, in compliance with ESPOL’s grading system (Figure 1f). 
The range is shown through a red-yellow-green divergent color 
scale with a zero value of 6.00—the minimum passing grade. 

On adding courses to—and removing them from—the prediction 
panel, iCoRA estimates the student’s GPA that would result if the 
predictions shown became true. The GPA is estimated by consid-
ering the lower and upper bounds of the ranges predicted and is 
presented on the interface also as a range (Figure 1g). 

4.3 Explanations 
iCoRA provides explanations of some of the features used by its pre-
diction models. These explanations combine text, very simple visu-
alizations, and math formulas. Examples include tooltips describing 
the difculty estimators for courses (Figure 1h). The performance 
predicted for each course is also explained. The Why? button to the 
right of each prediction (Figure 1i) explains the relative contribu-
tion of the model’s input features to its output (see Figure 2). This 
contribution is calculated with SHAP [45], an explanation method 
based on linear feature attribution. 

iCoRA ofers these explanations so that the students can capital-
ize on the factors that could positively infuence their performance. 
Perhaps more importantly, these explanations seek to encourage 
students to mitigate potential negative impact. For example, a way 
to reduce the risk of getting bad grades could be to decrease the 
overall grading stringency (total β) of the courses. This could be 
done by enrolling in fewer courses or by taking easier ones. 

Having introduced the functionalities of iCoRA, we are ready to 
elaborate on the user studies we conducted with the tool to answer 
our research questions. These studies investigate the impressions 
of the students with regard to iCoRA’s functionalities, and in par-
ticular, shed light on the impact of performance predictions on the 
decisions, behaviors, and preferences of students in the context of 
course selection. 

5 STUDY 1 — SHOWING PERFORMANCE 
PREDICTIONS 

We ran a qualitative study that investigated the efects that show-
ing performance predictions has on students when they plan 
their upcoming term (RQ1). Our original experimental design 
was based on a controlled lab study. However, the sanitary crisis 
around the COVID-19 pandemic forced us to convert our protocol 
into a remote format. We thus used video conferencing software to 
test and interview participants remotely. 

Our records suggest that taking this course for the first time has a high 
positive contribution on the predicted grade and that your grade in 
Communication II has a small positive contribution. 

On the other hand, the total difficulty (the alpha estimator) of the courses 
you want to take this semester has a median negative contribution, and the 
number of times you took Communication II has a small negative 
contribution on the predicted grade for this course. 

The following graph shows the contributions of the features that most impact 
the performance predicted for your BUSINESS MANAGEMENT course:

BUSINESS MANAGEMENT x

55%

10%

25%

11%

Figure 2: Explanation of the grade predicted for a Business 
Management course. Besides the pie chart, the version of 
iCoRA used in our frst study included a written summary 
of the impact of the model’s input features. 

5.1 Participants and Procedure 
We recruited 12 participants from ESPOL’ computer science (CS) 
undergraduate program (4 female; 8 male; 21–30 years old; median 
age 24). Students were at diferent stages of their degree: frst (n=2), 
second (n=6), and third (n=4) year. All had attended at least two 
academic advising meetings. 

In each individual study session, participants were asked to put 
themselves in the place of the fctional student whose academic 
history and set of available courses were shown in iCoRA. Partic-
ipants had to select a set of courses for their upcoming semester, 
and were allowed to use iCoRA to work on this task for as long as 
they wanted. We did not specify restrictions regarding the number 
of courses they were allowed to take. 

Participants worked with a modifed version of ESPOL’s CS pro-
gram, where the last two semesters were replaced with courses from 
other CS curricula. This was enforced by ethics regulations in order 
to avoid infuencing the students’ attitude towards actual courses 
they had not taken yet. The introduced courses were chosen so that 
they seemed plausible, that is, they had names that participants 
could understand and relate to (e.g., Dynamic Programming). 

Participants had to choose among a set of nine introduced courses 
distributed across basic sciences, humanities, and professional train-
ing. Each category had three courses of low, average, and high 
difculty. 

For the sake of the study, iCoRA was fed with synthetic data. 
Grades and aggregated difculty estimators were randomly drawn 
from diferent normal distributions skewed according to the courses’ 
difculty. A student’s failing history (number of times a course was 
taken) was generated using a power-law distribution. The models 
that predicted the performance of the surrogate courses consisted 
of handcrafted linear functions that allowed us to control the con-
tribution of each feature to the predicted performance intervals. 
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5.2 Data Collection and Analysis 
We used online questionnaires to collect participants’ consent, de-
mographic information, and data on the strategies they usually 
follow when choosing their courses. We recorded all the sets of 
courses composed by the participants. We also captured their in-
teractions with iCoRA through a video conferencing tool. In a 
post-task questionnaire, participants rated a series of propositions 
about iCoRA. The interviews were recorded, fully transcribed, and 
qualitatively coded following a thematic analysis approach [13]. 
Our initial coding was done by two researchers independently and 
focused on the students’ general perception and rationale. Higher-
level topics emerged in subsequent meetings in which the coding 
scheme was revised iteratively by the two researchers until a unifed 
coding scheme was reached. 

5.3 Results 
Our analysis of the questionnaires and interviews revealed a general 
enthusiasm for iCoRA. Participants particularly appreciated the 
access to their courses’ historical information and highlighted the 
usefulness of this feature to get an overall impression of a course’s 
reputation—instead of having to ask other fellow students about this. 
The prediction feature was highly appreciated—both at the course 
and the GPA levels. Figure 3 shows a summary of the participants’ 
ratings of several aspects of iCoRA. These results are displayed in 
a 7-point Likert scale. 

In the subsections that follow, we present the most important 
fndings of this study. The quotes included below have been trans-
lated from Spanish. 

5.3.1 Students’ Decisions. Before the course selection task, we 
asked participants about the strategies they usually follow to de-
cide on their courses. Their answers included aspects such as aiming 
at a specifc term workload (“I choose between fve and six courses 
per semester” [P01]; “I always choose four courses” [P11]), balancing 
the difculty of their courses (“I have to choose this course [...] with 
easier courses” [P03]), and following the sequence in which courses 
appear in their academic program (“I usually don’t choose courses 
from distant levels” [P01]). 

After composing and choosing a course set with iCoRA, during 
the interviews, we asked students on the rationale behind their 
decisions. All participants, with no exception, considered the pre-
dicted performance of the courses as the most important factor to 
select their courses: “I noticed the grades were better in my second set 
of courses. So, I chose that.” [P03]; “[iCoRA] showed me the minimum 
grade I was going to get and that’s important because it afects my 
GPA for the next semester.” [P11]. In fve occasions, performance 
was also mentioned in regards to the predicted GPA: “It showed me 
how my GPA was going to improve by the end of this semester” [P07]. 

These statements suggest that iCoRA’s predictions heavily infu-
enced participants’ approach to course selection. The tool seemed 
to have turned the participants’ attention to the predicted grades, 
away from other aspects that students traditionally consider when 
deciding on their courses. We found that, in the presence of perfor-
mance predictions, students perceive course selection as a grade 
maximization problem. The data supports this hypothesis: The set 
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Figure 3: Participants’ ratings on several propositions about 
their experience with iCoRA. Each proposition was rated us-
ing a 7-point Likert scale. 

of courses selected by the students are, on average, at the 96-th per-
centile in terms of GPA’s predicted upper bound when we consider 
all the course sets they ever composed. When we look at the GPA’s 
lower bound, and the maximal individual grades, the sets lie at the 
77-th and 87-th percentiles respectively. 

Our video analysis also indicates that when selecting courses, 
students often disregarded factors such as the workload they would 
face or the difculty of the chosen courses. 

5.3.2 Participants’ Interest in Explanations. Explainability is cru-
cial to produce predictions that humans can understand and trust. 
iCoRA takes steps in this direction by providing explanations for 
the course difculty indicators α and β [16]. In the same vein, the 
Why? button explains the impact of the model’s input features 
on the prediction outcome. This functionality aims at opening the 
black boxes used by the tool. However, the participants’ ratings on 
the explanations suggest that these might have not been very efec-
tive. Some students commented on this explicitly: “The explanations 
could be less formal.” [P05]; “There are too many words, they could be 
replaced with icons, or perhaps be more concise.” [P06]; “Show them 
with other words, they were hard to understand.” [P11]. 

The comments of above suggest the version of iCoRA used in 
this study has room for improvement regarding how it explains 
the diferent pieces of information—which seemed not obvious 
to the students. However, our video analysis also revealed that 
overall participants interacted very little with the explanations. 
Regarding the difculty estimators of the courses, only three par-
ticipants opened the explanation for α (mean time 8 seconds) and 
just one checked the explanation for β (during 25 seconds). The 
explanations for the performance predictions provided through the 
Why? button sparked more interest: ten participants opened them 
at some point, leading to a global average of 1.5 minutes (for the 
total time). However, the participants’ interest in these explanations 
decreased signifcantly after their frst interaction with them. Only 
eight participants requested these explanations a second time and 
the average time they spent on it went from 53 seconds for the frst 
time to just 12 for the second. Further interactions with the Why? 
button were very rare, and always shorter. 
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6 STUDY 2 — ALTERNATIVE VISUAL 
REPRESENTATIONS OF PERFORMANCE 
PREDICTIONS 

Motivated by the observations presented above, we designed a sec-
ond study to better understand whether and, if so, how students are 
infuenced by the way iCoRA’s performance predictions are con-
veyed. The driving research question for this study was whether 
diferent visual representations for performance predictions 
can afect the decisions and behaviors of the students when 
they select their courses (RQ2). We wanted to see, for example, 
if text-based performance predictions would make students less 
eager to maximize their grades. In this study, we investigate these 
efects not only on the students’ fnal decisions, but also on their 
decision process and preferences. 

We followed a protocol similar to the one of Study 1 but this 
time, students had to choose courses from several versions of their 
academic program, each with a diferent set of available courses. 
Besides, the performance predictions were displayed using diferent 
visual representations. Before describing our experimental protocol 
in detail, we frst explain the alternative visual representations we 
used to answer RQ2. 

6.1 A Spectrum of Performance Prediction 
Representations 

For this study, we designed eight diferent ways to show perfor-
mance predictions and integrated them into iCoRA. These represen-
tations span along a spectrum from specifc to vague (Figure 4). This 
spectrum is inspired in work by Walny et al. [68] that describes 
a continuum of visual representations from countable (numeric) 
to pictorial (abstract), found by observing how people sketch rep-
resentations of data. A set of similar representations was found 
by Méndez et al. [49] after comparing the visualization construc-
tion process of iVoLVER [50] and Tableau Desktop. Based on these 
continua, we consider a performance prediction representation to 
be more specifc if it makes the actual grade more directly read-
able, and more vague if it manipulates the grade to represent it 
graphically, in a more abstract way. We elaborate on the visual 
representations that compose our spectrum in the following: 
- value: Shows the predicted grade with a line mark along a (0.00− 
10.00⌋ horizontal scale. The line mark is colored according to the 
red-yellow-green scale of the range representation used in Study 
1 (Figure 5b). 

- range: This is the range representation used in Study 1. It shows 
the lower and upper bounds of the interval predicted by our mod-
els. It uses the same continuous color scale of Study 1 (Figure 5c). 
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- bars: Fills a portion of a horizontal bar with color indicating the 
course type (e.g., humanities). The bars of all the selected courses 
are aligned, which essentially composes a horizontal bar chart 
with a common left baseline (Figure 5d). 

- stars: Represents the predicted course grade by flling a set of fve 
stars—similar to those used in rating systems. This representation 
could be considered as a discrete version of the bars one. Color 
is also used here to depict the course type (Figure 5e). 

- area: Uses circular marks that scale relative to each other to 
represent the predicted grades of a set of courses. Color is used 
here to depict the course type (Figure 5f). 

- color: Uses full, single-colored bars to encode the grade of each 
course. The color comes from the red-yellow-green color scale 
used by the value and range representations (Figure 5g). 

- text: Shows a text qualifying the course’s predicted grade. The 
tone of the message varies from “It is very likely that you will fail 
this subject; you will have to prioritize it over your other courses.” 
for grades between (0.00 − 2.00 to “You will do excellent in this 
subject; your grade may make you look exceptional in relation to 
other students.” for grades in the range (9.00 − 10.00⌋ (Figure 5h). 

- faces: Shows a colorless emoji-like face made up of two circular 
eyes and a curved mouth. As the course grade gets closer to 10, 
the eyes scale up and the curvature of the mouth increases. This is 
a very minimalistic version of the Chernof faces [21] (Figure 5i). 
These representations aim to cover a wide range of levels of speci-

fcity at conveying a predicted grade. The ends of the spectrum 
represent grades in very diferent ways: the value representation 
is very specifc, whereas the faces representation requires decod-
ing the grade from an abstract representation. We consider the 
representations to be split equally between the specifc and vague 
categories: Four of them (value, range, bars, and stars) are lo-
cated at the specifc side of the spectrum while the remaining four 
(area, color, text, and faces) lie closer to the vague end. How-
ever, we remark that the exact position of each visual representation 
along the continuum should not be considered defnitive. Especially 
within each category, some representations have similar efective-
ness to encode quantitative values [23, 24, 51]. This is particularly 
true for the bars and stars representations of the specifc category 
and for the area and color representations of the vague end. 

Figure 5 provides examples of predictions using the representa-
tions of our spectrum. The example shows the performance pre-
dicted for a set of three courses: Business Management, Advanced 
Mathematics, and Dynamic Programming. Figure 5a shows how the 
tool presented this set of selected courses when no prediction was 
provided. The remaining ones show the specifc (Figure 5b–e) and 
vague representations (Figure 5f–i). 

Specific Vague

6

8.9

6

8.4 9.3

6

6.8

6

6.2 7.5

This course may give you 
some headaches. Be careful.

You will do quite well in 
this course.

Value Range Bars Stars Area Color Text Faces

Figure 4: Specifc to vague spectrum of visual representations for performance predictions. See Section 6.1 for a detailed de-
scription of each representation. 
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Figure 5: Performance predictions from the spectrum of Figure 4 as show by iCoRA in Study 2. Sub-figure (a) shows how the
interface presented a set of selected courses in the control condition (i.e., when no performance prediction was provided).

6.2 Experimental Design
For Study 2, we followed a between-group design with respect to
the prediction representation type (specific and vague). Each of
these independent variables has four levels: value, range, bars,
and stars for the specific condition; and area, color, text, and
faces for the vague one.

For each of these two conditions, we had two dependent vari-
ables: student’s decisions and behavior. The students’ decisions (i.e.,
the course set they chose) are operationalized via four dimensions:
the number of selected courses, the average predicted grade
of those courses, the course set’s average workload (expressed
in hours per week), and its total workload. On the other hand,
the students’ behavior during a course selection task was opera-
tionalized through the time they interacted with the explanations
for the performance predictions. More specifically, we measured

the student’s behavior by the number of times they invoked the
tool’s explanations, and the total time these explanations remained
open.

We then used the levels of the independent variable prediction
representation type to conduct a within-subject analysis for each
experimental condition. These analyses compared the measure-
ments of the dependent variables within each level (specific and
vague).

6.3 Participants
For this study, we invited students of two Human-Computer Inter-
action and one Data Structures courses. Out of the 105 students
enrolled in these courses, 91 volunteered to participate (74 male, 17
female; 19–32 years old—median 22). All were enrolled in ESPOL’s
CS undergraduate program and none had participated in Study 1.

Figure 5: Performance predictions from the spectrum of Figure 4 as show by iCoRA in Study 2. Sub-fgure (a) shows how the 
interface presented a set of selected courses in the control condition (i.e., when no performance prediction was provided). 

6.2 Experimental Design 
For Study 2, we followed a between-group design with respect to 
the prediction representation type (specifc and vague). Each of 
these independent variables has four levels: value, range, bars, 
and stars for the specifc condition; and area, color, text, and 
faces for the vague one. 

For each of these two conditions, we had two dependent vari-
ables: student’s decisions and behavior. The students’ decisions (i.e., 
the course set they chose) are operationalized via four dimensions: 
the number of selected courses, the average predicted grade 
of those courses, the course set’s average workload (expressed 
in hours per week), and its total workload. On the other hand, 
the students’ behavior during a course selection task was opera-
tionalized through the time they interacted with the explanations 

for the performance predictions. More specifcally, we measured 
the student’s behavior by the number of times they invoked the 
tool’s explanations, and the total time these explanations remained 
open. 

We then used the levels of the independent variable prediction 
representation type to conduct a within-subject analysis for each 
experimental condition. These analyses compared the measure-
ments of the dependent variables within each level (specifc and 
vague). 

6.3 Participants 
For this study, we invited students of two Human-Computer Inter-
action and one Data Structures courses. Out of the 105 students 
enrolled in these courses, 91 volunteered to participate (74 male, 17 
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female; 19–32 years old—median 22). All were enrolled in ESPOL’s 
CS undergraduate program and none had participated in Study 1. 
All have had prior academic advising and were at diferent stages 
of their degree: second or third year (n = 39), fourth (n = 27), and 
superior years (n = 25). 

6.4 Procedure 
We modifed the version of iCoRA used in our frst study to dis-
play the sequence of forms, tasks, and questionnaires that partici-
pants had to work with. We made this modifed version of the tool 
available online. It had a wizard-like interface design that guided 
participants through the following sequence of activities: 

Introduction to iCoRA. After providing consent and flling out a 
questionnaire about their demographics and course selection habits, 
each participant watched a 12-minute video that explained iCoRA’s 
user interface. The video described how to compose sets of courses, 
and the tool’s performance predictions and explanations. It also 
elaborated on the tasks participants had to complete. 

First course selection task: No Prediction mode. In this study partic-
ipants had to complete fve course selection tasks, always starting 
with a scenario in which iCoRA did not display any performance 
prediction (as shown in Figure 5a). Similar to the procedure of Study 
1, participants were instructed to put themselves in the shoes of 
the student whose academic history and set of available courses 
were presented. They had to compose a set of courses to enroll in 
their upcoming term and submit their selection. 

We introduced the no prediction mode in iCoRA in order to famil-
iarize the users with the tool before being exposed to performance 
predictions. Furthermore, this condition provided us with a control 
scenario that allowed us to contrast the efect of the mere presence 
of performance predictions on the users, regardless of the chosen 
visual representation. This course selection task was followed by a 
questionnaire on the rationale behind the participants’ decisions. 

Four course selection tasks with prediction. The no prediction 
course selection task was followed by four others, each of which 
presented the predicted grades through the visual representations 
of a single type (specifc or vague). Due to our within-subject study 
for the representation type, each participant was exposed either 
to the specifc visualizations or to the vague ones. The association 
participant-representation type was done randomly, before the ex-
ecution of the study. We used Latin squares to balance the order in 
which each participant saw the corresponding representations. 

All the course selection tasks were based on the same academic 
program and the history of the same fctional student. However, the 
courses available for enrollment difered among tasks. Following 
the strategy used in Study 1, we introduced courses from other CS 
curricula at semesters six and seven of the academic program shown 
to our participants. 9 out of the 11 introduced courses were available 
for enrollment and were distributed uniformly among the three 
course categories defned by ESPOL. Each category contained a hard 
course, one of average difculty, and an easy one. The introduced 
courses were unique to a selection task. That is, in every task, 
participants would see a diferent set of available courses that had 
not appeared before and would not appear in subsequent tasks. 
Under the hood, however, the set of available courses was the 
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Figure 6: Simplifed explanation shown by the Why button 
in the version of iCoRA used in Study 2 

same in terms of type, prerequisites, workload, difculty, historical 
distribution of grades, and underlying prediction model. Only the 
names and the position of the courses within the program were 
diferent. For example, the course Micro- & Nanotechnologies that 
appeared in the value visual representation had the same features 
as the Data Protection course of the text representation. We made 
this decision to make the students’ chosen sets comparable across 
diferent course selection tasks. 

Each course selection task was followed by the same rationale 
questionnaire used after the no prediction task. 

Closing questionnaire. The experiment concluded with a fnal 
questionnaire asking participants about their preferences on how 
iCoRA presented its predictions. 

Based on the observations and participants’ comments of Study 
1, for this study we simplifed the explanations shown by the Why 
button. Specifcally, we removed the textual summary. Figure 6 
depicts how iCoRA’s prediction explanations looked like in this 
study. We also hid from the interface the section that shows the 
changes in the student’s GPA (Figure 1g) in order to study the 
infuence of the predicted grades in isolation. 

6.5 Data Collection and Statistical Tests 
Besides the questionnaires answers, we recorded the set of courses 
our participants chose in each selection task, as well as their as-
sociated grades and workload. Because this study did not involve 
interviews or screen recordings, we instrumented iCoRA to log the 
consequences of several types of user interactions. These included 
the partial sets participants progressively built when deciding on 
their courses, as well as the number of times they opened the ex-
planations of the predicted performances through the Why button 
and the duration of these events. 

To inquire whether the prediction representations explain the 
diferences in the means of the dependent variables mentioned 
above (students’ decisions and behavior), we carried out two types 
of statistical tests. We conducted a within-subject analysis with 
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Table 1: Results of the ANOVA for the average predicted grade of the course sets selected by the students. Post hoc comparisons 
use Bonferroni adjustment. * shows the mean diference is signifcant at the .05 level. 

Mean Std. Deviation no prediction value range bars stars 

no prediction 7.33 0.39 no prediction 1 -.386* -.298* -.289* .279* 
value 7.72 0.44 value 1 .088 .097 .107 
range 7.63 0.37 range 1 .009 .019 
bars 7.62 0.43 bars 1 .010 
stars 7.61 0.35 stars 1 

(a) Means and standard deviations (b) Post hoc comparisons. Mean diferences shown. 

Table 2: Results of the ANOVA for the average chosen workload (in hours/week) of the course sets selected by the students. 
Post hoc comparisons use Bonferroni adjustment. * shows the mean diference is signifcant at the .05 level. 

Mean Std. Deviation no prediction value range bars stars 

no prediction 4.34 0.57 no prediction 1 0.502* 0.413 0.313 0.369* 
value 3.84 0.67 value 1 -.089 -.188 -.133 
range 3.93 0.62 range 1 -.099 -.044 
bars 4.02 0.56 bars 1 .056 

stars 3.97 0.51 stars 1 

(a) Means and standard deviations (b) Post hoc comparisons. Mean diferences shown. 

the data of the students exposed to each experimental condition— 
specifc or vague. For these analyses we used one-way ANOVAs, per 
dimension of each dependent variable. When the data was found 
to be not spherical (i.e., the Mauchly’s test failed), we applied a 
Greenhouse-Geisser correction. All post-hoc tests were corrected 
for multiple comparisons using Bonferroni corrections. These anal-
yses also included the non-predictive measures obtained under the 
no prediction condition, since all participants were exposed to it. 

The between-group analysis was carried out using a series of 
t-tests. These analyses consisted of a cross comparison between the 
measurements of the dependent variables under each representation 
of the experimental conditions. This yielded a set of 80 comparisons 
(e.g., average number of selected courses using: value and text, 
value and area, value and color, value and faces, and so on). 

We also carried out a contrast itemset mining analysis [42, 
55] to investigate whether some prediction representations may 
have induced students to select particular groups of courses. 

All of our tests were carried out with a signifcance level p < 0.05. 

6.6 Results 
We excluded the data of 12 participants from our analyses due to 
inconsistencies between their answers and the usual enrollment 
habits of ESPOL students2. Our analyses are thus based on the data 
of 79 participants—37 who were exposed to the vague representa-
tions and 42 who used iCoRA under the specifc ones. 

2These 12 participants chose either more than 6 courses or less than 3. The frst 
scenario is not allowed at ESPOL. On the other hand, enrolling in less than 3 courses 
mostly happens under very specifc circumstances (e.g., when a student is at their very 
last academic term). Hence, our participants did not have any valid reason to choose 
so few courses. 

We present our fndings along three axes, namely the students’ 
decisions, their behaviors, and their preferences. 

6.6.1 Students’ Decisions. The decision of a student after a course 
selection task with iCoRA is defned by the set of courses selected. 
We elaborate on our fndings in three stages. In the frst stage, 
we discuss the results of the within-subject and between-group 
analyses. In a second stage, we compare the chosen courses with all 
the partial sets ever composed by the students. This analysis aims 
at detecting the grade maximization efect observed in Study 1. In a 
third and fnal stage, we report the results of an analysis based on 
contrast itemset mining [42] on the courses chosen by the students. 
The goal of this analysis is to identify groups of courses that are 
preferred by the participants exposed to a particular type of visual 
representation. 

Within-subject analysis. Our analysis did not yield any signif-
icant diferences within the vague representations condition for 
any of the dimensions of our dependent variable. On the contrary, 
we found signifcant diferences between the average predicted 
grade (F(3.028, 124.146) = 8.097, p = 0.0005, ηp 

2 = 0.165) within 
the students exposed to the specifc representations condition. The 
post hoc tests revealed signifcant diferences in the means of this 
dimension between the variant without prediction and each of the 
specifc prediction representations (see Table 1a and 1b). Note that 
the no prediction condition reaches a lower mean in the average 
predicted grade than those in the specifc representations condition. 

We also detected signifcant diferences between the means for 
the average chosen workload (F(2.905, 119.102) = 5.771, p =0.001, 
ηp 
2 = 0.123). The pairwise comparisons revealed diferences between 
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Figure 7: Co-occurrence graphs of the courses students selected when exposed to different types of prediction representations.

Between-group analysis. We carried out a set of t-tests between
groups of students exposed to both the specific and vague represen-
tations. This round of experiments yielded a significant difference
in the average number of selected courses for the text (m =
5.225) and bars (m = 4.38) representations, t(80) = 2.09, p = 0.04.

Grade Maximization Effect. As done for Study 1 (Section 5.3.1),
we looked at the maximal grades of all the course sets ever com-
posed by a student during an interaction with iCoRA. We then
calculated, for each visual representation, the average percentile of
the maximal grade of the selected course. The average percentile
ranges from 53.37 (standard deviation σ = 29.38) for the stars
representation, to 66.44 (σ = 24.30) for the no prediction mode.
The average percentile across all interactions is 59.42 (σ = 26.64).
The trends are similar for the average grade of the course sets,
whereas for the minimal grade the highest average percentile is
32.78 (σ = 22.70). These results contest the grade maximization
effects we observed for the GPA in Study 1.

Itemset Mining on Courses. We also investigated whether some
prediction representationsmay have leaned students towards choos-
ing specific courses. For this purpose, we looked at the co-occurrence
graphs of the courses the students selected per visual representation
(Figure 7). The nodes of these graphs represent the courses available
for enrollment in the study’s selection tasks. Thicker edges denote
higher co-occurrence. We observe some recurrent cliques in all
scenarios, e.g., the set { 1, 2, 4, 6 } is prominent in almost all cases.
Motivated by this insight, we carried out a deeper analysis based
on contrast itemset mining [42, 55]. This technique finds groups of
courses that co-occur more frequently in a visual representation
than in others. We measure the relevance of those groups via the
growth ratio score [42], which given two categories, defines the
ratio of the frequencies3 of a group of courses in each of the two
categories. Values larger than 1 denote “interesting” groups.

3That is, the number of course sets that contain the group divided by the total number
of course sets in the category. We considered groups of courses occurring in at least
10 course sets.

Figure 7: Co-occurrence graphs of the courses students selected when exposed to diferent types of prediction representations. 

the no prediction condition and the value and stars representa-
tions (see Tables 2a and 2b). Note again, that the mean for the 
no prediction condition is higher than the previously highlighted 
representations. 

Between-group analysis. We carried out a set of t-tests between 
groups of students exposed to both the specifc and vague represen-
tations. This round of experiments yielded a signifcant diference 
in the average number of selected courses for the text (m = 
5.225) and bars (m = 4.38) representations, t(80) = 2.09, p = 0.04. 

Grade Maximization Efect. As done for Study 1 (Section 5.3.1), 
we looked at the maximal grades of all the course sets ever com-
posed by a student during an interaction with iCoRA. We then 
calculated, for each visual representation, the average percentile of 
the maximal grade of the selected course. The average percentile 
ranges from 53.37 (standard deviation σ = 29.38) for the stars 
representation, to 66.44 (σ = 24.30) for the no prediction mode. 
The average percentile across all interactions is 59.42 (σ = 26.64). 

The trends are similar for the average grade of the course sets, 
whereas for the minimal grade the highest average percentile is 
32.78 (σ = 22.70). These results contest the grade maximization 
efects we observed for the GPA in Study 1. 

Itemset Mining on Courses. We also investigated whether some 
prediction representations may have leaned students towards choos-
ing specifc courses. For this purpose, we looked at the co-occurrence 
graphs of the courses the students selected per visual representation 
(Figure 7). The nodes of these graphs represent the courses available 
for enrollment in the study’s selection tasks. Thicker edges denote 
higher co-occurrence. We observe some recurrent cliques in all 
scenarios, e.g., the set { 1, 2, 4, 6 } is prominent in almost all cases. 
Motivated by this insight, we carried out a deeper analysis based 
on contrast itemset mining [42, 55]. This technique fnds groups of 
courses that co-occur more frequently in a visual representation 
than in others. We measure the relevance of those groups via the 
growth ratio score [42], which given two categories, defnes the 
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ratio of the frequencies3 of a group of courses in each of the two 
categories. Values larger than 1 denote “interesting” groups. 

Albeit frequent everywhere, the course group { 1, 2, 4, 6 } is 4.73 
times more frequent—with 95% confdence interval (CI) 2.85, 7.81 — 
in the no prediction scenario than in the scenario with the text 
representation. Similar scores can be found between the scenario 
with no prediction and the faces visual representation—growth 
ratio 3.68 with CI 2.15, 6.34 . The set { 1, 2, 5, 6 } is prominent in 
the scenario without prediction as it is 5.25 times more frequent— 
CI 1.78, 15.46 —than for the text representation. Conversely the 
group of courses { 3, 4, 5, 6 } is 2.86 times more frequent—with 
CI 1.67, 4.92 —in the bars and faces representations than in the 
scenario with no prediction. The growth ratio scores were calculated 
on sets of courses selected by disjoint groups of students. 

6.6.2 Process. We present the results in regards to this variable in 
line with our within-subject and between-group analysis protocols. 
We did not fnd signifcant diferences for the dimensions of behav-
ior in our within-subject analysis. In regards to the between-group 
analysis, our t-tests revealed signifcant diferences in the average 
number of times the users opened the explanations for the (i) 
the text (m=4.78) vs. the value representations (m=2.4, t(51) = 2.44, 
p = 0.02); (ii) text (m=4.78) vs. bars (m=2, t(53) = 3.04, p = 0.004); 
(iii) faces (m=4.04) vs. value (m=2.98, t(42) = 2.13, p = 0.04); and 
(iv) faces (m=4.04) vs. bars (m=2.28, t(46) = 2.94, p = 0.006). 

6.6.3 Preferences. We asked students, in the closing questionnaire, 
their opinion on the most and least appropriate prediction represen-
tations. As summarized in Figure 8, there seems to be a consensus 
when it comes to their preferred prediction representations: 76% of 
the students favored the range within the specifc types, whereas 
74% of the students deemed the text the most suitable to convey 
predictions among the vague representations. 

Preferred Representations. When explaining their preferences, 
most participants who favored the range representation compared 
it with the value one and highlighted the capacity of the former to 
convey uncertainty. This was often mentioned as a booster of their 
trust in the grades predicted by the tool: “A range implies that the 
prediction is subject to uncertainty and it gives a more realistic view 
than a specifc grade. It seems to me a better approach to show the 
predictions. It seemed more credible and gave me more information 
than the other options.” [P40S]; “I fnd it difcult to believe that I 
will get exactly the grade shown by the exact value. However, a range 
seems more credible to me.” [P32S]; “It is better for students to see a 
range of possible values for their grades, since this indicates how much 
our grades may vary if we do not keep our efort level; this message is 
impossible to convey with an exact value.” [P10S]; “I consider it more 
reliable, as it shows a margin in which my grade will be located. I can 
consider that at least I have a margin of error [...] Compared to the 
other ones, despite being very visual, they don’t tell me much at the 
end of the day.” [P05S]; “It is better to have a range, I can’t trust an 
exact grade.” [P24S]; “It gives us more confdence because we know 
that a prediction has a margin of error.” [P37S]; “I feel that with an 

3That is, the number of course sets that contain the group divided by the total number 
of course sets in the category. We considered groups of courses occurring in at least 
10 course sets. 

exact grade there is more possibility of error. Instead, a range lets me 
know, more or less, the grade I may get.” [P02S]. 

The students who used iCoRA with the vague representations 
preferred the text mainly because of its simplicity and directness: 
“It is much clearer and more explanatory.” [P03V]; “It is simple and 
concise.” [P09V]; “I prefer to be presented with things in a more direct 
way, and this message is, to some extent, encouraging.” [P10V]; “It is 
faster to grasp.” [P17V]. Students also highlighted that, compared 
to the others from the vague category, the text representation 
does not require interpretation: “It is easier to understand, it leaves 
nothing to interpretation.” [P45V]; “It gives me an answer that is 
easy to understand. With the colors or the faces, I have to infer what 
the symbols are and what each means.” [P11V]; “It seems the most 
appropriate to me because no previous explanation is needed to un-
derstand how it works. It is intuitive and it tells directly how I would 
perform in a course.” [P30V]. Other students commented on how 
close the textual messages were to the advice provided by their 
advisors or other students: “I felt that in a certain way, it encouraged 
me to take the courses, because the language used is similar to the 
one a friend from my degree would have used when talking about 
the courses.” [P28V]; “The information is somewhat similar to the 
recommendations my advisor would give me in person.” [P42V]. 

Non-preferred Representations. The opinions about the least ap-
propriate representations were varied. The stars and faces stand 
out as the least preferred representations according to 36% and 39% 
of the participants. They are followed by the area and the bars, 
both appearing in 24% of the answers. 

In the specifc category, the stars and the bars were deemed 
as not precise enough, distracting, and even “not serious” for an 
academic context. The comments for these representations also 
highlighted the lack of a numeric representation of the predicted 
grades, as illustrated by this exemplary statement: “It does not pro-
vide much feedback. What I want to see is my grade.” [P02V]. 

The faces were rejected because it was hard for students to 
discern diferences between the representations shown. It was com-
mon for students to state that it was hard to distinguish the de-
gree of happiness or sadness in the facial expressions. A similar 
problem was reported about the circular marks used in the area 
representation. The sizes of the circles were considered not easily 
distinguishable. 

7 DISCUSSION 
Our discussion is initially structured along the three same axes used 
to present our experimental results in light of our research questions 
RQ1 and RQ2 (Sections 7.1–7.3). Additionally, in Section 7.4, we 
discuss the ethical considerations of using GPA-based predictions 
for course selection and recommendation. 

7.1 Students’ Decisions 
Study 1 tackles RQ1 by investigating the efect on students of 
displaying performance predictions during term planning. The ob-
servations of this study suggest that predictions can make students 
embrace a grade and GPA optimization approach, disregarding 
other important factors (Section 5.3.1). Study 2 inquired whether 
this behavior was caused by the mere presence of individual course 
performance predictions, and whether those predictions induce 
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framing efects on the students (RQ2). The results of this second 
study (Section 6.6.1) suggest that, at least for the individual grades, 
predictions per se do not induce a grade maximization efect. We 
remark, however, that Study 2 left out the prediction of the GPA. 
This raises the question of whether this factor might have been the 
trigger of the maximization efect observed in Study 1, as it has a 
greater impact on the career of the students than the individual 
course grades of an academic term. 

Study 2 also suggests that the students’ decision process and 
their fnal choices are indeed infuenced by the type of prediction 
representation (RQ2). While no visual representation seems to have 
favored a grade maximization efect, the specifc representations 
seemed to have leaned students towards more optimistic predictions 
and lighter workloads (see Tables 1b and 2b). This was not the case 
for the visualizations located at the vague end of our spectrum of 
prediction representations. All this suggests that when exposed 
to “countable” predictions, students put more efort on the course 
selection task. This is confrmed by the fact that, on average, the 
students composed more partial sets when exposed to the specifc 
representations: The value and range representations lead the way 
with the longest sequence of interactions—8.02 and 7.73 sets on 
average—before making a decision (the total average is 6.59). This 
indicates that specifc (i.e., countable) visual representations make 
students iterate more over their enrollment options, which could 
be a sign of a deeper and more critical refection process. 

If the courses chosen by the students do not point to a grade max-
imization efect, then the students must be also taking the workload 
into account. This assertion is suggested by our itemset mining 
analysis. The group of courses { 1, 2, 4, 6 }, which is prevalent in all 
the levels of our experimental conditions, includes 3 courses with 
a workload of 3 hours each, and one course with a workload of 5 
hours. This “formula” actually corresponds to the lightest possible 
combination of courses in terms of workload. Nonetheless, this 
logic does not apply to all popular groups of courses. For instance, 
the itemset { 3, 4, 5, 6 }—prevalent mostly in the vague representa-
tions bars and faces—leads to a high workload. Conversely, the 
popularity of this set can be explained by the location of its compo-
nents in the visualization of the academic program: These appeared 
together at the left-most end of the upper row of courses avail-
able for enrollment. A similar observation applies to the group 
of contiguous courses { 1, 2, 5, 6 }, particularly prominent in the 
no prediction scenario. Altogether, this evidence suggests that the 
students do care about workload when no prediction about their 
GPA is shown, and that the vague representations may induce stu-
dents to think less over their enrollment choices—an overreliance 

efect. Furthermore, we highlight a preference for courses in the 
upper row of available courses in the program. This conforms to the 
strategy expressed by some students in Study 1 and also confrmed 
by the demographics questionnaire of Study 2: when deciding on 
their enrollment, students favor courses located at the level of the 
upcoming semester in their study program. 

7.2 Course Selection Process 
We discuss this axis in terms of two aspects of the course selection 
process, namely, the strategy used by the students and their inter-
actions with iCoRA’s explanations. We also discuss the potential 
risk of overreliance and automation-complacency efects. 

Strategy. Our analysis of the students’ interactions with iCoRA 
showed a recurrent two-stage strategy to compose set of courses. In 
the frst stage, students generally added three courses to the grades 
prediction panel. This was followed by an exploration phase in 
which they added and removed courses repeatedly. This behavior 
was common regardless of the prediction visual representation 
(even in the no prediction scenario). While this might imply students 
picked up and removed courses driven by some sort of optimization 
objective, our analysis of Section 6.6.1 indicates that they did not 
necessarily settle for the most optimistic predictions. The lower 
average workloads observed for the specifc visual representations 
reiterates the role of the workload in the students’ approach. 

Interactions with the Explanations. In Study 1, our participants 
exhibited a weak interest on the explanations iCoRA provided, both 
for the course difculty estimators and the performance predictions 
(accessible via the Why button). Nevertheless, we obtained hints 
about possible causes of that lack of interest. Some of the students 
argued that the explanations were too long and far from obvious, 
which is consistent with the observation that the frst interaction 
was comparatively long (53 seconds on average) and was rarely 
followed by a second one. When designing our second study, we 
took action in this regard and simplifed the performance explana-
tions. This, however, did not increase the interest of the students: In 
49% of the course selection tasks, our participants did not interact 
with the performance explanations at all, and only in 11% of the 
cases there was more than one interaction. The total time invested 
in reading the explanations was on average 14 seconds, although 
we expect it to be shorter than for Study 1 since the explanations 
were more concise. The within-study and between-group analyses 
described in Section 6.6.2 did not show any signifcant diference in 
the total interaction time with the explanations as a consequence of 
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Figure 8: Most and least appropriate prediction representations according to the participants’ opinions. 
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the visual representation of the prediction. However, the vague rep-
resentations color and faces led to signifcantly more interactions 
than the specifc visualizations value and bars. These higher num-
bers of interactions with iCoRA’s explanations could be explained 
by the interpretation overhead incurred by the vague representa-
tions. Nevertheless, explanations might have been less needed for 
the specifc representations, as these make the grades predicted 
more directly readable. 

Overreliance and Potential Complacency Efects. The lack of inter-
est in the explanations provided by iCoRA might suggest some sort 
of automation complacency [29] in the students regarding iCoRA’s 
performance predictions. Although it could be said that students 
did not need major explanations—because they trusted the system— 
our analyses rather suggest that they were, in most of the cases, 
not very interested in understanding what was happening inside 
the tool. Explanations incur, however, a cognitive load on users. A 
promising research direction could be to decide the right stages of 
the course selection process where explanations are pertinent and 
desirable. An exciting venue for future research would be the explo-
ration of student-generated explanations of their performance. This 
type of explanation design has shown benefts in the visualization 
of complex scientifc phenomena [60]. 

The evidence we gathered on overreliance and potential com-
placency efects, however, is not conclusive. Further investigations 
are needed in this area to better understand and fully characterize 
these efects. 

7.3 Preferences 
The preferences of the students elicited via our studies indicate 
that they value two attributes in performance predictions, namely 
credibility and directness. The frst factor is corroborated by their 
preference for the range (overall, the most preferred specifc repre-
sentation) over the value. Indeed, students rated predictions with 
ranges as more reliable and credible than exact values, as ranges 
convey more information. These observations are consistent with 
existing studies of the cognitive preferences of people regarding 
AI agents [27]. The evidence suggests that, from the perspective of 
user acceptance, the plausibility of a prediction or explanation, i.e., 
its concordance with the users’ background and common sense, is 
as important as its comprehensibility or simplicity. This credibility 
dimension may also explain the preference of students for the text 
over the other vague representations, although this preference can 
also be explained by the directness of textual predictions. This was 
explicitly stated by several participants of Study 2, who valued tex-
tual predictions as direct, simple, and easy to understand. However, 
it is equally plausible that textual recommendations generated more 
trust because they expressed messages that were close to what a 
human advisor or colleague would say. 

7.4 Ethical Considerations of Grade- and 
GPA-based Predictions 

An important ethical concern of our work arises from profling 
students based on their course grades and GPA. Such predictions 
have been discussed as a potential threat to the students’ potential 
and self-efcacy [9, 31] and must be tempered with caution. As we 

mentioned earlier, iCoRA does not seek to replace the human advi-
sors. Rather, it intends to support and facilitate the student-advisor 
dialogue through a data-driven approach. There exist factors out-
side the student’s academic environment that performance-based 
predictive models cannot account for (e.g., extracurricular activ-
ities, family and health issues). Thus, we highlight the need for 
human judgment on top of any data-based academic performance 
prediction. Our observations suggest that the decisions and recom-
mendations derived from iCoRA—and similar tools—must remain 
on the human side of the academic advising process. This is a key 
aspect of interactive visualization technologies where “humans in 
the loop” make decisions and perform analytical tasks based on 
data. That being said, it is also important to highlight that even 
with human intervention, overreliance efects may arise. Moreover, 
students ultimately decide their enrollment based on factors that 
may change after their advising meetings (e.g., availability of places 
in courses, scheduling constraints). These aspects are beyond the 
advisors’ reach and are often handled exclusively by the students, 
at the exact moment of enrollment. Thus, more than recommending 
which courses could be taken, advisors should provide students with 
guidelines on the criteria to consider when deciding on their en-
rollment. Performance and workload should not be the only factors 
to observe, and other considerations will likely include the specifc 
context of each HEI and the personal circumstances of each student. 

We also highlight the reductionist nature of the GPA in describ-
ing the students’ performance. After all, the learning process com-
prises other aspects—and, hence, other metrics (e.g., development 
of learning outcomes, levels of engagement, the students’ learning 
style, or teaching preferences)—that might be more suitable for 
prediction. Such metrics, however, are rarely systematically col-
lected by HEIs. When measured, they are often kept by instructors 
to refect on specifc, localized activities. Therefore, they seldom 
become part of the students’ ofcial academic record. At ESPOL, for 
example, the GPA is the ofcial performance metric that students 
are exposed to throughout their career. It was also the only per-
formance indicator readily available for prediction. This practical 
limitation forced us to study iCoRA with a focus on GPA. 

One promising future perspective of this work is to elicit conver-
sations with policymakers on alternative performance metrics that 
could be gathered at HEIs to further empower students and coun-
selors in their use of educational data. Learning strategies are in-
creasingly more oriented to emphasize learning through the demon-
stration of what a student is able to do with the knowledge they 
acquire or develop [35]. Moreover, several studies suggest that how 
students are assessed impacts their learning performance [1, 54, 62]. 
Therefore, assessment should also be focused on measuring the 
learning quality, rather than the learning quantity [64]. To stress 
these aspects, alternative assessment activities require students to 
demonstrate of thinking and problem-solving skills, involvement 
or engagement, performing a signifcant task, creating an artifact 
or product, etc. They also resort to portfolios, case-based or peer 
assessments, and observation of students group process [46, 64]. 

Given this variety of assessment activities, there is a myriad of 
indicators that could be used as proxies of student performance 
e.g., level of engagement in meaningful activities, quality of the 
interactions between peers in collaborative tasks, refections about 
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students’ learning during a design/creation process, certifcate or 
badge achievements, student outcomes observation when doing 
an activity or working in groups. The increasing penetration of 
LMS, MOOCs, and learning apps may enable monitoring these 
indicators and include them as part of the data students and advisors 
could visualize and discuss during their meetings. However, until 
enough data on alternative metrics is available, our fndings should 
be interpreted considering the limitations of the GPA discussed 
throughout the paper. 

8 LIMITATIONS AND OPEN QUESTIONS 
An obvious threat to the ecological validity of our studies is the 
use of a fctional academic history and courses from external CS 
curricula. We acknowledge that the stakes are higher in real-world 
scenarios, where poor enrollment decisions have a real impact on 
the students’ life. That being said, we did not fnd any indication that 
introducing courses from other curricula in our studies got in the 
way of our participants’ decisions. Although it could be argued that 
these decisions might have been made without much consideration, 
our video analysis of the data from Study 1 showed that students 
indeed engaged in the course selection tasks, often thinking aloud 
about their enrollment options. The setting of Study 2 did not allow 
for the collection of video data. However, our quantitative analyses 
were based on the data of participants whose decisions complied 
with the usual enrollment patterns of ESPOL students. The use 
of synthetic data also allowed us to reduce the vox populi efect, 
toward a more objective course selection process. 

It is important to remark that course selection is also afected 
by non-academic aspects. Extracurricular workload, health and 
family issues, and many other factors play a role in the decisions 
and academic performance of students [36]. In this regard, our 
results should be taken with a grain of salt. In the same vein, the 
evidence gathered through our studies is not sufcient to rule out 
the presence of extra-representational factors (e.g., preferences, 
conventions) that can also infuence the interpretation of a visual 
representation [34] and, thus, the decisions of the viewer. 

Our fndings may also be limited by the background of our par-
ticipants. CS students are familiarized with visual representations 
of data and scientifc concepts. Additional studies are needed to 
explore whether the efects we observed hold for students from 
diferent backgrounds. 

Moreover, our observations of the grades maximization efect 
are not conclusive. Given the evidence we gathered, our intuition 
is that, in the presence of predictions for the GPA, students tend to 
look for maximization, but not when only individual course grades 
are shown. This question, however, is yet to be answered. Additional 
studies (e.g., in-situ pilots) are also needed to issue more concrete 
design recommendations for future course selection tools. iCoRA is 
a high-fdelity prototype, but its institutional deployment is still 
subject to the outcomes of multiple studies and discussions with 
several parties. The use of learning analytics dashboards should be 
thoroughly analyzed before their adoption at HEIs. 

Finally, our fndings highlight that the design of a tool like 
iCoRA must consider the role that both students and advisors play 
in the course selection process. In line with the goal of interactive 
visualization technologies, iCoRA and similar tools require humans 

in the loop and this requirement should not be underestimated. 
Otherwise, this type of technologies run the risk of being perceived 
as oracles that people are supposed to trust and never question. 

9 CONCLUSION 
This paper investigated the efects of performance predictions on 
students when they plan their upcoming term. To this end, we 
used iCoRA, an interactive visualization tool that enables the com-
position of arbitrary sets of courses and provides performance 
predictions and explanations. 

A qualitative study of the tool found that in response to per-
formance predictions for both individual course grades and the 
GPA, students tend to approach course selection as a performance 
maximization problem, even to the detriment of other factors such 
as the workload. We also observed little interest in understanding 
the rationale behind the predictions provided by the tool. 

In a follow-up quantitative study, we investigated whether the 
maximization and overreliance efects were afected by the type 
of visual representation used to convey iCoRA’s performance pre-
dictions. To this end, we designed a specifc to vague spectrum of 
visual representations for performance predictions. In this second 
study, we did not found evidence of maximization efects when 
the GPA is not shown together with the individual course grade 
predictions. The participants’ lack of interest in the explanations, 
however, persisted. We also found several signifcant diferences 
in aspects such as the average predicted grade and workload of 
the selected courses. These diferences arose both among visual 
representations of the same type and between diferent types. 

Our observations show that framing efects arise when visual 
structures are used to communicate performance predictions to 
students. That is, some of the visual representations we studied 
have the potential to shape the students’ decisions and their deci-
sion process. Furthermore, specifc types of visual representations 
elicit strong preferences and aversions on the students. These ob-
servations are of great value to design better data-driven course 
selection tools. Equally importantly, our insights provide new em-
pirical evidence on how diferent design choices can shape the way 
people interpret visual representations of data. 
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